The Crystal Structure and Some Properties of $\mathrm{Eu}_{\mathbf{2}} \mathbf{S b}_{\mathbf{3}}$

G. CHAPUIS,* F. HULLIGER, \dagger AND R. SCHMELCZER*
*Institut de Cristallographie de l'Université de Lausanne, CH-1015
Lausanne-Dorigny; †Laboratorium für Festkörperphysik ETH, CH-8093
Zürich, Switzerland

Received January 22, 1979; in final form April 26, 1979

Abstract

The Mooser-Pearson phase $E u_{2} \mathrm{Sb}_{3}$ crystallizes in a new monoclinic structure type, space group $P 2_{1} / c$ (No. 14) with $a=6.570(1) \AA, b=12.760(2) \AA, c=15.028(2) \AA, \beta=90.04(1)^{\circ} ; Z=8$. The Sb atoms form six-membered twisted chain fragments oriented along the b-axis. The Eu atoms are eight- and ninecoordinated by Sb . The $\mathrm{Eu}_{2} \mathrm{Sb}_{3}$ structure is closely related to the structure of $\mathrm{Ca}_{2} \mathrm{As}_{3}$. The relations between their space-group symmetries are derived and hypothetical higher-symmetry structures are discussed. The semiconducting $\mathrm{Eu}_{2} \mathrm{Sb}_{3}$ is antiferromagnetic below $T_{\mathrm{N}}=14.4^{\circ} \mathrm{K}$. An $\mathrm{Eu}_{2} \mathrm{Sb}_{3}$-type structure was found also for $\mathrm{Sr}_{2} \mathrm{Sb}_{3}$.

Introduction

In the last two decades the investigations of the rare-earth pnictides concentrated mainly on the rock salt-type compounds. The study of other phases was largely neglected and in fact phase diagrams are known only in some rare cases. The europium pnictides particularly did not attract much attention because the known NaCl -type phases EuN and EuP contain the cation in the trivalent state and therefore show no magnetic ordering at low temperatures, in contrast to the well-studied Eu monochalcogenides. Only recently, efforts have been made to investigate the various pnictide phases of Eu and Yb (1), the crystal chemistry of which resembles that of the alkaline-earth pnictides more closely than that of the remaining pnictides.
On preparing EuSb_{2} crystals (2) we also obtained some darker crystals of which the composition, according to an electron-beam microanalysis, was $\mathrm{Eu}_{39.9} \mathrm{Sb}_{60.1 \pm 0.2}$.

These crystals were used for the structure determination described in this paper. Meanwhile the crystal structure of $\mathrm{Eu}_{2} \mathrm{Sb}_{3}$ has been mentioned by Taylor et al. (1) to be of the $\mathrm{Ca}_{2} \mathrm{As}_{3}$ type (3) which was found also in $\mathrm{Eu}_{2} \mathrm{As}_{3}$ (1). Guinier patterns indeed appeared to confirm this assignment. Our structure determination on single crystals, however, led to a different though closely related structure for $\mathrm{Eu}_{2} \mathrm{Sb}_{3}$. Possibly $\mathrm{Eu}_{2} \mathrm{Sb}_{3}$ occurs in two modifications, both being nonmetallic.

Structure Determination

The single crystal chosen for the structure determination had an irregular trigonalprismatic shape with approximate dimensions of $0.08 \times 0.08 \times 0.05 \mathrm{~mm}$. Precession patterns showed the symmetry to be monoclinic and the systematic extinctions ($h 0 l$), $l=2 n+1$, and ($0 k 0$), $k=2 n+1$, leading to the space group $P 2_{1} / c$ (No. 14). Diffraction data for the structure determination were
collected on a SYNTEX $P 2_{1}$ automatic fourcircle diffractometer with Nb -filtered $\mathrm{Mo} \mathrm{K} \alpha$ radiation ($\lambda_{\text {MoK } \bar{\alpha}}=0.71069 \AA$). The lattice constants, as given in Table I, were calculated by a least-squares procedure using 24 accurately centered reflections in the range $45^{\circ} \leqslant 2 \theta \leqslant 55^{\circ}$. In this range the separation of $K \alpha_{1}$ and $K \alpha_{2}$ lines allowed the centering of the reflections on $K \alpha_{1}$ ($\lambda=$ $0.70926 \AA$). The intensities were measured by the $\theta-2 \theta$ scan method and the background was evaluated from the scan profile $(4,5)$. A complete set of data $(+h,+k, \pm l)$ was collected up to $(\sin \theta / \lambda)_{\max }=0.74$. The intensities were corrected for absorption ($\mu_{\text {MoK } \alpha}=324 \mathrm{~cm}^{-1}$) by the Gaussian integration method yielding transmission factors between 0.27 and 0.39 . The reduction of the data resulted in 3943 independent intensities of which 2414 were larger than $3 \sigma(I)$. The structure was solved by direct methods using the program MULTAN (6). For all other calculations the programs of the X-Ray System 72 (7) were used. Scattering factors for the neutral atoms Eu^{0} and Sb^{0} were taken from Cromer and Mann (8), the anomalous dispersion factors from Cromer (9). The structure was refined by full-matrix least squares, minimizing the quantity $\sum w\left(\left|F_{0}\right|-\left|F_{c}\right|\right)^{2}$. The weights were taken as
$\left\{\sigma\left(\left|F_{0}\right|\right)\right\}^{-2}$. The positional and anisotropic thermal parameters are listed in Table I. The R values obtained were $R=\sum|\Delta F| / \sum\left|F_{0}\right|=$ 0.064 and weighted $R_{w}=0.069$. A final difference Fourier map showed mainly peaks in the vicinity of the atoms, resulting probably from series termination effects. ${ }^{1}$

Characteristic features of this structure are weak reflections with indices $k=2 n+1$ (all $h k l), k / 2+l=2 n+1$ ($0 k l, k$ even), and $h+k / 2=2 n+1$ ($h k 0, k$ even). The major part of the unobserved intensities defined by $I<3 \sigma(I)(38 \%$ of all reflections) belongs to these groups. This implies that the structure of $E u_{2} \mathrm{Sb}_{3}$ must be a slightly deformed version of a structure with higher symmetry of which the b-axial length is half that of the real structure. The space-group symmetry of this subcell is Pncn (No. 52). The R value of the main reflections ($k=2 n$) is 0.027 , while the R value of the difference reflections ($k=$ $2 n+1$) is 0.17 . This relatively high value is due to the lower accuracy of the weak intensities. The values of the anisotropic thermal coefficients are very low and show a nearly isotropic and equal behavior of all the Eu and Sb atoms in this structure.

[^0]TABLE I
Data for the Monoclinic Room-Temperature ($295^{\circ} \mathrm{K}$) CRystal Structure of $\mathrm{Eu}_{2} \mathrm{Sb}_{3}{ }^{\boldsymbol{a}}$

Atom	x	y	z	$U_{\text {II }}$	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Eu_{I}	$0.0034(2)$	$0.2785(1)$	$0.2445(1)$	$0.0132(5)$	$0.0106(5)$	$0.0108(7)$	$0.0012(6)$	$0.0008(5)$	$0.0000(7)$
$\mathrm{Eu}_{\text {II }}$	$0.5053(2)$	$0.4711(1)$	$0.2537(1)$	$0.0128(5)$	$0.0113(5)$	$0.0129(6)$	$0.0025(6)$	$-0.0002(5)$	$-0.0022(7)$
$\mathrm{Eu}_{\text {III }}$	$0.7454(2)$	$0.3759(1)$	$0.4959(1)$	$0.0152(6)$	$0.0106(7)$	$0.0110(8)$	$-0.0042(5)$	$0.0022(6)$	$0.0000(6)$
$\mathrm{Eu}_{\mathrm{IV}}$	$0.2465(2)$	$0.3733(1)$	$-0.0030(1)$	$0.0139(6)$	$0.0130(6)$	$0.0103(7)$	$0.0006(5)$	$-0.0015(5)$	$-0.0008(6)$
Sb_{I}	$0.2365(3)$	$0.3825(2)$	$0.4257(1)$	$0.0138(8)$	$0.0109(9)$	$0.016(1)$	$-0.0012(7)$	$-0.0011(7)$	$0.0033(8)$
$\mathrm{Sb}_{\mathrm{II}}$	$0.0360(3)$	$0.0330(2)$	$0.1592(1)$	$0.0107(8)$	$0.0121(9)$	$0.013(1)$	$0.0035(7)$	$-0.0011(7)$	$-0.0023(8)$
$\mathrm{Sb}_{\mathrm{III}}$	$0.0842(3)$	$0.5439(2)$	$0.1554(1)$	$0.0115(9)$	$0.0142(9)$	$0.0115(9)$	$0.0041(7)$	$-0.0023(7)$	$-0.0016(8)$
$\mathrm{Sb}_{\mathrm{IV}}$	$0.5786(3)$	$0.2042(2)$	$0.3429(1)$	$0.0137(9)$	$0.0101(9)$	$0.013(1)$	$-0.0020(7)$	$0.0028(7)$	$-0.0026(7)$
Sb_{V}	$0.4613(3)$	$0.2201(2)$	$0.1579(1)$	$0.0127(8)$	$0.0120(9)$	$0.0103(9)$	$0.0044(7)$	$0.0030(7)$	$0.0017(7)$
$\mathrm{Sb}_{\mathrm{VI}}$	$0.7379(3)$	$0.3687(2)$	$0.0728(1)$	$0.0144(8)$	$0.0094(9)$	$0.014(1)$	$0.0010(7)$	$0.0010(7)$	$0.0018(8)$

[^1]TABLE Ia

Powder Pattern of Eu Sb_{3} For $\mathrm{CuK} \alpha_{1}$ Radiation			
$d(\AA)$	$h k l$	$I_{\text {calc }}$	$I_{\text {obs }}$
4.577	120	67	w
3.940	023	31	vw
3.910	$12 \overline{2}$	54	
3.908	122	53)	w
3.757	004	63	vw
3.380	$12 \overline{3}$	273)	
3.378	123	275	ms
3.262	$10 \overline{4}$	137 \}	
3.260	104	134 \}	wm
3.011	$20 \overline{2}$	685	
3.009	202	680)	vs
2.936	042	1000	vs
2.905	12 4	$486\}$	
2.903	124	481 \}	vs
2.819	141	350	
2.819	141	372)	s
2.723	$22 \overline{2}$	84	
2.722	222	81 \}	ms
2.719	025	338	
2.681	$14 \overline{2}$	94	
2.681	142	93)	wm
2.524	$22 \overline{3}$	145	
2.522	223	147)	m
2.513	125	212	
2.512	125	211 \}	ms
2.432	044	38	vvw
2.307	224	31 \}	
2.305	224	35)	Nw
2.289	240	767	vs
2.198	126	302 \}	
2.197	126	305	s
2.106	061	31	vVW
2.103	302	97	
2.102	302	94	wm
2.082	243	42)	
2.081	243	39)	w
2.052	$32 \overline{1}$	23	
2.052	321	23)	vow
1.997	$32 \overline{2}$	23)	
1.997	322	24)	vw
1.958	063	171	wm
1.955	$24 \overline{4}$	56	
1.954	244	54	wm
1.944	$12 \overline{7}$	110	wm
1.943	127	110	wm
1.814	324	62)	w
1.813	324	65	w
1.793	341	41 \}	w
1.793	341	$38)$	w
1.736	065	101	w

TABLE Ia-Continued

$d(\AA)$	hkl	$I_{\text {calc }}$	$I_{\text {obs }}$
1.706	325	81	w
1.705	325	83	
1.679	165	77	w
1.678	165	76)	
1.628	$34 \overline{4}$	39 \}	vw
1.627	344	40)	
1.597	$32 \overline{6}$	54	w
1.596	326	55	
1.595	080	23	
1.5804	$22 \overline{8}$	20	vvw
1.5795	228	19)	
1.5689	129	63)	w
1.5684	129	60)	
1.5418	$18 \overline{1}$	$98\}$	m
1.5418	181	93 \}	
1.5351	265	131 \}	m
1.5346	265	133)	
1.5109	067	60	w
1.5053	$40 \overline{4}$	32)	
1.5046	404	$28\}$	vw
1.4911	$32 \overline{7}$	101	wm
1.4907	327	97)	
1.4726	167	92	wm
1.4723	167	89)	
1.4597	$36 \overline{3}$	78	wm
1.4593	363	80	
1.4348	280	60	w
1.4336	$44 \overline{2}$	91)	m
1.4333	442	85	

Description of the $\mathbf{E u}_{\mathbf{2}} \mathbf{S b}_{\mathbf{3}}$ Structure

The monoclinic, nearly orthorhombic, unit cell of $\mathrm{Eu}_{2} \mathrm{Sb}_{3}$ contains eight formula units. All the atoms are located in the general positions $4(e)$ of the space group $P 2_{1} / c$, as listed in Table I. The anions form sixmembered twisted chain fragments,

$$
\mathrm{Sb}_{\mathrm{I}}^{2-}-\mathrm{Sb}_{\mathrm{II}}{ }^{-}-\mathrm{Sb}_{\mathrm{III}}^{-}-\mathrm{Sb}_{\mathrm{IV}}{ }^{-}-\mathrm{Sb}_{\mathrm{V}}^{-}-\mathrm{Sb}_{\mathrm{VI}}{ }^{2-},
$$

with $\mathrm{Sb}-\mathrm{Sb}$ distances of $2.92,2.90,3.02$, 2.89 , and $2.92 \AA$, respectively. The indicated formal charge distribution (neglecting the partly covalent Eu-Sb bonding) suggests that the $\mathbf{S b}-\mathbf{S b}$ distances to the end members should be larger than those within the chain fragments. Surprisingly, however, the
central distance turned out to be largest, anomalously large indeed for a single bond. We have no explanation for this fact since the nonmetallic properties (see later) require true $\left(\mathrm{Sb}_{6}\right)^{8-}$ polyanions, i.e., $\mathrm{Eu}_{2} \mathrm{Sb}_{3}$ has to fulfill the Mooser-Pearson bond rule (10, 11). (If this $\mathrm{Sb}_{\mathrm{III}}-\mathrm{Sb}_{\text {IV }}$ distance were so large that it would no longer correspond to any covalent bonding, then such a structure would be appropriate for hypothetical Mooser-Pearson phases such as EuLaSb ${ }_{3}$, $\mathrm{YSiAs}_{2}, \mathrm{KSrAsSe}_{2}$, etc.)

In a way similar to that of the anions $\left(\mathrm{Sb}_{\mathrm{I}}{ }^{2-}, \mathrm{Sb}_{\mathrm{VI}^{2-}}{ }^{2-}\right.$, and $\mathrm{Sb}_{\mathrm{II}}{ }^{-}, \mathrm{Sb}_{\mathrm{III}}{ }^{-}, \mathrm{Sb}_{\mathrm{IV}}{ }^{-}, \mathrm{Sb}_{\mathrm{V}}{ }^{-}$, respectively), the divalent cations can also be divided into two groups, namely, $E u_{1}, \mathrm{Eu}_{\mathrm{II}}$, and $\mathrm{Eu}_{\text {III }}, \mathrm{Eu}_{\mathrm{IV}}$. In Table II the $\mathrm{Eu}-\mathrm{Sb}$ distances are shown up to $3.9 \AA$. For $\mathrm{Eu}_{\text {III }}$ and $E u_{\text {IV }}$ eight Sb neighbors are found within coordination spheres of 3.51 and $3.53 \AA$, respectively. The coordinations of Eu_{I} and $E u_{I I}$ are more extended. Both atoms are coordinated by nine Sb neighbors within spheres of $3.87 \AA$. Next-nearest Sb atoms for all of the four Eu atoms are at distances larger than $4.8 \AA$. Similar $\mathrm{Eu}-\mathrm{Sb}$ distances have been found in EuSb_{2} (2).

The partial structure of the cations in $\mathrm{Eu}_{2} \mathrm{Sb}_{3}$ is virtually identical to that of the $\mathrm{Ca}_{2} \mathrm{As}_{3}$ type. As pointed out by Deller and Eisenmann (3), this partial structure can be described in an idealized tetragonal cell which is obtained from the monoclinic cell by the relations $2 a=b, \beta=90^{\circ} . \mathrm{Eu}_{\mathrm{I}}$ and $\mathrm{Eu}_{\mathrm{II}}$ are located at the vertices of square prisms. These prisms are linked by their faces and are A - and B-centered, both by $E u_{\text {III }}$ and $\mathrm{Eu}_{\mathrm{IV}}$, in alternating layers along the c-axis. For the axial ratio $c / b=(3 / 2)^{1 / 2}=1.22$ (for the real structure $c / b=1.18$) an idealized partial structure is obtained that contains two kinds of sites, but all cations possess eight equidistant neighbors. (Assuming the axial ratio $c / a=2^{-1 / 2}=0.71$, the elongated prisms are compressed to cubes. This leads to two appreciably different $M-M$ distances, namely, $\quad M_{\mathrm{I}}-M_{\mathrm{I}}=M_{\mathrm{II}}-M_{\mathrm{II}}=2^{-1 / 2} a$ along

TABLE II
Coordinations and Interatomic Distances (\AA) IN $\mathrm{Eu}_{2} \mathrm{Sb}_{3}{ }^{a}$

$E u_{1}-1 \mathrm{Sb}_{\text {IV }}$ at 3.298(3)	$1 \mathrm{Eu}_{\text {II }}$ at 4.095(2)
$1 \mathrm{Sb}_{\text {VI }}$ at 3.320(3)	$1 \mathrm{Eu}_{\text {II }}$ at 4.115(2)
$1 \mathrm{Sb}_{v}$ at 3.362(2)	$1 \mathrm{Eu}_{\mathrm{Iv}}$ at 4.225(2)
$1 \mathrm{Sb}_{\text {II }}$ at 3.392(2)	$1 \mathrm{Eu}_{\text {III }}$ at 4.325(2)
$1 \mathrm{Sb}_{\mathrm{I}}$ at 3.394(3)	$1 \mathrm{Eu}_{\text {III }}$ at 4.549(2)
$1 \mathrm{Sb}_{\text {III }}$ at 3.400(2)	$1 \mathrm{Eu}_{\text {IV }}$ at 4.550(2)
$1 \mathrm{Sb}_{\text {II }}$ at 3.565(2)	
$1 \mathrm{Sb}_{\text {III }}$ at 3.680(2)	
$1 \mathrm{Sb}_{\mathbf{v} \text { at }} \mathbf{3 . 8 6 3 (2)}$	
$\mathrm{Eu}_{\text {II }}-1 \mathrm{Sb}_{\text {III }}$ at 3.270(3)	$1 \mathrm{Eu}_{\mathrm{I}}$ at 4.095(2)
$1 \mathrm{Sb}_{\text {I }}$ at 3.330(3)	$1 \mathrm{Eu}_{\mathrm{I}}$ at 4.115(2)
$1 \mathrm{Sb}_{\text {IV }}$ at 3.355(2)	$1 \mathrm{Eu}_{\text {III }}$ at 4.148(2)
$1 \mathrm{Sb}_{\text {II }}$ at 3.379(3)	$1 \mathrm{Eu}_{\text {IV }}$ at 4.395(2)
$1 \mathrm{Sb}_{\mathrm{VI}}$ at 3.382(3)	$1 \mathrm{Eu}_{\text {III }}$ at 4.549(2)
$1 \mathrm{Sb}_{\mathrm{v}}$ at 3.450(2)	$1 \mathrm{Eu}_{\mathrm{IV}}$ at 4.561(2)
$1 \mathrm{Sb}_{\mathrm{v}}$ at 3.523(2)	
$1 \mathrm{Sb}_{\text {IV }}$ at 3.691(2)	
$1 \mathrm{Sb}_{\text {II }}$ at 3.871(3)	
$\mathrm{Eu}_{\text {III }}-1 \mathrm{Sb}_{1}$ at 3.302(3)	$1 \mathrm{Eu}_{\text {II }}$ at 4.148(2)
$1 \mathrm{Sb}_{\mathrm{v}}$ at 3.304(3)	$1 \mathrm{Eu}_{\mathrm{I}}$ at 4.325(2)
$1 \mathrm{Sb}_{\text {II }}$ at 3.318(3)	$1 \mathrm{Eu}_{\text {III }}$ at 4.521(2)
$1 \mathrm{Sb}_{\mathrm{VI}}$ at 3.329(3)	$1 \mathrm{Eu}_{\text {II }}$ at 4.549(2)
$1 \mathrm{Sb}_{\text {IV }}$ at 3.360(3)	$1 \mathrm{Eu}_{\mathrm{I}}$ at 4.549(2)
$1 \mathrm{Sb}_{\text {II }}$ at 3.394(3)	$1 \mathrm{Eu}_{\text {IV }}$ at 4.567(2)
$1 \mathrm{Sb}_{1}$ at 3.396(3)	$1 \mathrm{Eu}_{\mathrm{IV}}$ at 4.578(2)
$1 \mathrm{Sb}_{\mathrm{I}}$ at 3.506(3)	
$\mathrm{Eu}_{\mathrm{IV}}-1 \mathrm{Sb}_{\text {III }}$ at 3.329(3)	$1 \mathrm{Eu}_{\mathrm{I}}$ at 4.225(2)
$1 \mathrm{Sb}_{\text {IV }}$ at 3.333(3)	$1 \mathrm{Eu}_{\text {II }}$ at 4.395(2)
$1 \mathrm{Sb}_{\text {III }}$ at 3.398(3)	$1 \mathrm{Eu}_{\mathrm{i}}$ at 4.550(2)
$1 \mathrm{Sb}_{\mathrm{V}}$ at 3.415(3)	$1 \mathrm{Eu}_{\text {II }}$ at 4.561(2)
$1 \mathrm{Sb}_{\mathrm{VI}}$ at 3.423(3)	$1 \mathrm{Eu}_{\text {III }}$ at 4.567(2)
$1 \mathrm{Sb}_{\text {I }}$ at 3.436(3)	$1 \mathrm{Eu}_{\text {rv }}$ at 4.577(2)
$1 \mathrm{Sb}_{\mathrm{VI}}$ at 3.456(3)	$1 \mathrm{Eu}_{\text {II }}$ at 4.578(2)
$1 \mathrm{Sb}_{\mathrm{VI}}$ at 3.531(3)	
$\mathrm{Sb}_{\mathrm{I}}-1 \mathrm{Eu}_{\text {III }}$ at 3.302(3)	$1 \mathrm{Sb}_{\text {II }}$ at 2.918 (3)
$1 \mathrm{Eu}_{\text {II }}$ at 3.330(3)	$1 \mathrm{Sb}_{\text {IV }}$ at 3.432(3)
$1 \mathrm{Eu}_{\mathrm{I}}$ at 3.394(3)	
$1 \mathrm{Eu}_{\text {III }}$ at 3.396(3)	
$1 \mathrm{Eu}_{\text {IV }}$ at 3.436(3)	
$1 \mathrm{Eu}_{\text {III }}$ at 3.506(3)	
$\mathrm{Sb}_{\text {II }}-1 \mathrm{Eu}_{\text {III }}$ at 3.318 (3)	$1 \mathrm{Sb}_{\text {III }}$ at 2.899(3)
$1 \mathrm{Eu}_{\text {II }}$ at 3.379(3)	$1 \mathrm{Sb}_{\mathrm{I}}$ at 2.918(3)
$1 \mathrm{Eu}_{1}$ at 3.392(2)	
$1 \mathrm{Eu}_{\text {III }}$ at 3.394(3)	
$1 \mathrm{Eu}_{\mathrm{I}}$ at 3.565(2)	
$1 \mathrm{Eu}_{\text {II }}$ at 3.871(3)	

TABLE II-Continued

$\mathrm{Sb}_{\text {III }}-1 \mathrm{Eu}_{\text {II }}$ at 3.270(3)	$1 \mathrm{Sb}_{\text {II }}$ 2.899(3)
$1 \mathrm{Eu}_{\mathrm{IV}}$ at 3.329(3)	$1 \mathrm{Sb}_{\text {IV }}$ at 3.016(3)
$1 \mathrm{Eu}_{\mathrm{IV}}$ at 3.398(3)	$1 \mathrm{Sb}_{\mathrm{VI}}$ at 3.422(3)
$1 \mathrm{Eu}_{\mathrm{I}}$ at 3.400(2)	
$1 \mathrm{Eu}_{\mathrm{I}}$ at 3.680(2)	
$\mathrm{Sb}_{\mathrm{IV}}-1 \mathrm{Eu}_{\mathrm{I}}$ at 3.298(3)	$1 \mathrm{Sb}_{\mathrm{v}}$ at 2.890(3)
$1 \mathrm{Eu}_{\mathrm{IV}}$ at 3.333(3)	$1 \mathrm{Sb}_{\text {III }}$ at 3.016(3)
$1 \mathrm{Eu}_{\text {II }}$ at 3.355(2)	$1 \mathrm{Sb}_{\mathrm{I}}$ at 3.432(3)
$1 \mathrm{Eu}_{\text {III }}$ at 3.360(3)	
$1 \mathrm{Eu}_{\text {II }}$ at 3.691(2)	
$\mathrm{Sb}_{\mathrm{V}}-1 \mathrm{Eu}_{\text {III }}$ at 3.304(3)	$1 \mathrm{Sb}_{\text {IV }}$ at 2.890(3)
$1 \mathrm{Eu}_{1}$ at 3.362(2)	$1 \mathrm{Sb}_{\mathrm{VI}}$ at 2.923(3)
$1 \mathrm{Eu}_{\text {IV }}$ at 3.415(3)	
$1 \mathrm{Eu}_{\text {II }}$ at 3.450(2)	
$1 \mathrm{Eu}_{\text {II }}$ at 3.523(2)	
$1 \mathrm{Eu}_{\mathrm{I}}$ at 3.863(3)	
$\mathrm{Sb}_{\mathrm{VI}^{-1}} \mathrm{Eu}_{\mathrm{I}}$ at 3.320(3)	$1 \mathrm{Sb}_{\mathrm{V}}$ at 2.923(3)
$1 \mathrm{Eu}_{\text {III }}$ at 3.329(3)	$1 \mathrm{Sb}_{\text {III }}$ at 3.422(3)
$1 \mathrm{Eu}_{\text {II }}$ at 3.382(3)	
$1 \mathrm{Eu}_{\text {IV }}$ at 3.423(3)	
$1 \mathrm{Eu}_{\text {IV }}$ at 3.456 (3)	
$1 \mathrm{Eu}_{\text {IV }}$ at 3.531(3)	

The $\mathbf{S b - S b - S b}$ angles within the six-membered chain fragments are:

$$
\begin{aligned}
& \mathrm{Sb}_{\mathrm{I}}-\mathrm{Sb}_{\mathrm{II}}-\mathrm{Sb}_{\mathrm{III}}: 106.52(8)^{\circ} \\
& \mathrm{Sb}_{\mathrm{II}}-\mathrm{Sb}_{\mathrm{III}}-\mathrm{Sb}_{\mathrm{IV}}: 103.00(8)^{\circ} \\
& \mathrm{Sb}_{\mathrm{III}}-\mathrm{Sb}_{\mathrm{IV}}-\mathrm{Sb}_{\mathrm{V}}: 104.53(8)^{\circ} \\
& \mathrm{Sb}_{\mathrm{IV}}-\mathrm{Sb}_{\mathrm{V}}-\mathrm{Sb}_{\mathrm{VI}}: 107.51(8)^{\circ}
\end{aligned}
$$

${ }^{a}$ Standard deviations are added in parentheses.
the cube edge and $M_{\mathrm{I}}-M_{\mathrm{II}}=a / 2$ along the cube diagonal.) The displacements of the Eu_{I} and $E u_{\text {II }}$ atoms in the real structure lead to $\mathrm{Eu}-\mathrm{Eu}$ distances of different lengths. Thus the shortest Eu-Eu contacts occur between $E u_{I}$ and $E u_{I I}$ in zigzag chains along the a axis. These contacts correspond to the $M-M$ distance along the edge of the prism basis in the idealized partial structure. Only the third-closest cation-cation contact, $E u_{I I}-\mathrm{Eu}_{\mathrm{II}}=4.15 \AA$, represents a distance between cations in different sites of the idealized structure.

Geometrical Relationships

As mentioned above, small displacements (of the order of $0.1-0.2 \AA$) mainly of the anions lead to an orthorhombic structure, space group Pncn (No. 52), with $a_{\text {orth }}=a_{\text {mon }}$, $b_{\text {orth }}=\frac{1}{2} b_{\text {mon }}, c_{\text {orth }}=c_{\text {mon }}, Z=4$, and
M_{I} in $4(d): \pm\left(\frac{1}{2}, y, \frac{3}{4} ; 0, \frac{1}{2}+y, \frac{1}{4}\right)$,
M_{II} and X_{I} in $4(c): \pm\left(\frac{1}{4}, \frac{1}{4}, z ; \frac{1}{4}, \frac{3}{4}, \frac{1}{2}+z\right)$,
$X_{\text {II }}$ in $8(e)$:

$$
\begin{aligned}
& \pm\left(x, y, z ; x, \bar{y}, \frac{1}{2}+z ; \frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}+z ;\right. \\
& \left.\quad \frac{1}{2}+x, \frac{1}{2}+y, \bar{z}\right) .
\end{aligned}
$$

M_{I} and $M_{\text {II }}$ correspond to $E u_{I}, \mathrm{Eu}_{\mathrm{II}}$, and $\mathrm{Eu}_{\text {III }}, \mathrm{Eu}_{\text {IV }}$, respectively, in the monoclinic structure. X_{I} corresponds to $\mathrm{Sb}_{\mathrm{I}}, \mathrm{Sb}_{\mathrm{VI}}$, and $X_{\text {II }}$ to $\mathrm{Sb}_{\text {II }}, \mathrm{Sb}_{\text {III }}, \mathrm{Sb}_{\mathrm{IV}}, \mathrm{Sb}_{\mathrm{V}}$. The coordinates for $\mathrm{Eu}_{2} \mathrm{Sb}_{3}$, obtained from the main reflections, are: $y\left(M_{\mathrm{I}}\right)=0.06 ; z\left(M_{\mathrm{II}}\right)=0.50$; $z\left(X_{\mathrm{I}}\right)=0.93 ; \quad x\left(X_{\mathrm{II}}\right)=0.06, \quad y\left(X_{\mathrm{II}}\right)=0.08$, $z\left(X_{\text {II }}\right)=0.16$. This (hypothetical) structure contains infinite anion spiral chains $\boldsymbol{X}_{\mathrm{II}^{-}}-\boldsymbol{X}_{\mathrm{II}^{-}}$ $X_{\mathrm{I}}-X_{\mathrm{II}}-X_{\mathrm{II}}$ along the a-axis with one short and two longer distances: $X_{\mathrm{II}}-X_{\mathrm{II}}=2.9 \AA$ and $X_{\mathrm{I}}-X_{\mathrm{II}}=3.2 \AA$ in our example.

The orthorhombic structure can be regarded as the parent structure of both the $\mathrm{Ca}_{2} \mathrm{As}_{3}$ and the $\mathrm{Eu}_{2} \mathrm{Sb}_{3}$ types. The infinite anion spiral chains are obtained starting with the $\mathrm{Eu}_{2} \mathrm{Sb}_{3}$ structure by breaking the $\mathrm{Sb}_{1 \mathrm{III}^{-}}$ $\mathrm{Sb}_{\text {IV }}$ bonds and linking $\mathrm{Sb}_{\text {III }}$ by the nearest $\mathrm{Sb}_{\mathrm{VI}}$ atom and $\mathrm{Sb}_{\text {IV }}$ with the nearest Sb_{I} atom. Starting with the $\mathrm{Ca}_{2} \mathrm{As}_{3}$ structure, the infinite anion spiral chains are created by linking the four-membered with the modified eight-membered chain fragments. The relationships among these three structures are visualized in Fig. 1. Table III shows the relations among their space-group symmetries. Minor variations of the anion coordinates allow one to construct spiral chains with equal $\boldsymbol{X}-\boldsymbol{X}$ distances.

We ignore whether this parent structure is realized in nature, but if so, it would be appropriate for nonmetallic representatives,

Fig. 1. Comparison of the $\mathrm{Eu}_{2} \mathrm{Sb}_{3}$ structure (left) and the $\mathrm{Ca}_{2} \mathrm{As}_{3}$ structure (right) with the hypothetical orthorhombic chain structure (middle). For $\mathrm{Ca}_{2} \mathrm{As}_{3}$ we have chosen the nearly orthorhombic cell $(P 2 / n)$ and in the (b, c) projection (upper right corner) only the upper half of the cell is reproduced. For a strict correspondence the origin of the $\mathrm{Ca}_{2} \mathrm{As}_{3}$ cell has to be shifted by $+\frac{1}{4}$ of its a-axis and $\frac{1}{2}$ of its b-axis. Large spheres, cations; small spheres, anions.
i.e., Mooser-Pearson phases, of the kind $\mathrm{Na}_{2} \mathrm{P}_{2} \mathrm{~S}, \mathrm{BaLaSi}_{2} \mathrm{As}$, or (with equal $\boldsymbol{X}-\boldsymbol{X}$ distances) RbSrSb_{3}, etc. If in this orthorhombic chain structure the anion spirals are additionally linked by bonds corresponding to the $\mathrm{Sb}_{\mathrm{III}}-\mathrm{Sb}_{\mathrm{IV}}$ bonds of the $\mathrm{Eu}_{2} \mathrm{Sb}_{3}$ structure we obtain a possible structure for Mooser-Pearson phases of the kind $M_{2} X^{-(x-2)} \boldsymbol{X}_{2}^{\prime-\left(x^{\prime}-3\right)}(\chi=$ anion valence, χ $2, \chi^{\prime}-3=$ apparent anion valences with
respect to the cations) such as hypothetical $\mathrm{K}_{2} \mathrm{SiAs}_{2}$ or $\mathrm{Ca}_{2} \mathrm{Si}_{3}$.

By increasing in the parent orthorhombic chain structure the $\boldsymbol{X}-\boldsymbol{X}$ distance to a nonbonding value, an "impure" polyanionic phase $M_{2} X\left(X_{2}^{\prime}\right)$ results, adequate possibly for Mooser-Pearson phases such as $\mathrm{Ba}_{2} \mathrm{SeTe}_{2}, \mathrm{RbBaBrSe}_{2}$, or $\mathrm{La}_{2} \mathrm{Sb}_{2} \mathrm{Te}$. The necessary distortions may leave the space group unchanged or may increase the sym-

TABLE III
Group-Subgroup Diagram Showing the Relations hetween the Structures of $\mathrm{Eu}_{2} \mathrm{Sb}_{3}$ AND $\mathrm{Ca}_{2} \mathrm{As}_{3}{ }^{a}$

Abstract

${ }^{a}$ Each subgroup is characterized by a letter followed by the index of the corresponding subgroup: t (translationsgleich) indicates a subgroup with the same cell, k (klassengleich) a subgroup with the same crystal class, and e a special case of k when the space group remains unchanged.

metry. By increasing the symmetry the $\mathrm{Eu}_{2} \mathrm{Sb}_{3}$ structure can finally be transformed into a tetragonal structure consisting of NaCl -type square nets and CaC_{2}-type layers. This idealization requires some substantial displacements. Thus we have to separate the Sb_{I} and $\mathrm{Sb}_{\mathrm{VI}_{1}}$ atoms from the chain fragments and shift them upward or downward into the $\left(E u_{\text {III }}, E u_{\text {IV }}\right)$ planes at $z=0$ and $z=\frac{1}{2}$. Moreover, all $\mathrm{Sb}_{\text {III }}-\mathrm{Sb}_{\text {IV }}$ bonds have to be eliminated by increasing the $\mathrm{Sb}_{\text {III }}-\mathrm{Sb}_{\text {IV }}$ distance. The positional parameters in the original $\mathrm{Eu}_{2} \mathrm{Sb}_{3}$ cell (where now $\beta=90^{\circ}$, $b / a=2, c / a>2$) become then

$$
\begin{aligned}
& \mathrm{Eu}_{\mathrm{I}} \rightarrow \mathrm{M}_{\mathrm{I}}: 0, \frac{1}{4}, \frac{1}{4} ; \\
& \mathrm{Sb}_{\mathrm{II}} \rightarrow X_{\mathrm{II}}: 0,0, z ; \\
& \mathrm{Sb}_{\text {IV }} \rightarrow X_{\mathrm{IV}}: \frac{1}{2}, \frac{1}{4}, \frac{1}{2}-z ; \\
& \mathrm{Eu}_{\text {II }} \rightarrow M_{\mathrm{II}}: \frac{1}{2}, \frac{1}{2}, \frac{1}{4} ; \\
& \mathrm{Sb}_{\text {III }} \rightarrow X_{\text {III }}: 0,0, \frac{1}{2}-z ; \\
& \mathrm{Sb}_{\mathrm{V}} \rightarrow X_{\mathrm{V}: \frac{1}{2}, \frac{1}{4}, z}
\end{aligned}
$$

for the CaC_{2}-type layer (where $z=\frac{1}{4}-r_{X} / c$, $2 r_{X}=X_{\mathrm{II}}-X_{\mathrm{III}}=X_{\mathrm{IV}}-X_{\mathrm{V}}=$ anion bond distance) and

$$
\begin{aligned}
& \mathrm{Eu}_{\mathrm{III}} \rightarrow \mathrm{M}_{\mathrm{II}:}: \frac{3}{4}, \frac{3}{8}, \frac{1}{2} ; \\
& \mathrm{Sb}_{\mathrm{I}} \rightarrow X_{\mathrm{I}}: \frac{1}{4}, \frac{3}{8}, \frac{1}{2} ; \\
& \mathrm{Eu}_{\mathrm{IV}} \rightarrow \mathrm{M}_{\mathrm{IV}}: \frac{1}{4}, \frac{3}{8}, 0 ; \\
& \mathrm{Sb}_{\mathrm{VI}} \rightarrow X_{\mathrm{VI}}: \frac{3}{4}, \frac{3}{8}, 0
\end{aligned}
$$

for the $\mathrm{NaCl}-\mathrm{type}$ square net. The space group is now $P 4_{2} / m m c$ (No. 131), a supergroup of the parent orthorhombic space group Pncn, but with half the unit ceill (see Table III). The stacking sequence along the c-axis is $A B A^{\prime} R A$ (A, NaCl-type square net at $z=0 ; A^{\prime}, \mathrm{NaCl}$-type square net at $z=\frac{1}{2}$, displaced by $a / 2$ with respect to $A ; B, \mathrm{CaC}_{2}{ }^{-}$ type layer). This means that the stacking of the NaCl -type square nets $\left(A, A^{\prime}\right)$ is the same as in the rock salt structure, whereas only one kind of CaC_{2}-type layer (B) is intercalated. Such an idealized structure will hardly be
realized in Mooser-Pearson phases because the still rather close $X-X^{\prime}$ contacts between anions of adjacent layers and square nets would give rise to distortions lowering the symmetry. These deformations can be avoided, e.g., as in the $\mathrm{ThCr}_{2} \mathrm{Si}_{2}$ type (space group $I 4 / \mathrm{mmm}$, No. 139), where ThSi_{2} is placed into the CaC_{2}-type layers and Cr_{2}, i.c., only "cations", into the $\mathrm{NaCl}-\mathrm{type}$ square nets. If the CaC_{2}-type layers have the composition TeNd_{2} (anti-CaC2 type) where, however, no Nd-Nd bonds exist, and the NaCl -type square nets are substituted by oxygen square nets, we end up with the tetragonal $\mathrm{Nd}_{2} \mathrm{O}_{2} \mathrm{Te}$ structure adequate for normal valence compounds.

Starting either from the original $\mathrm{Eu}_{2} \mathrm{Sb}_{3}$ structure or from the idealized tetragonal model structure, we can create another hypothetical "impure" polyanionic structure, one which contains anion squares. The squares are formed with $\mathrm{Sb}_{\mathrm{II}}, \mathrm{Sb}_{\mathrm{III}}, \mathrm{Sb}_{\mathrm{IV}}, \mathrm{Sb}_{\mathrm{V}}$ of one chain fragment of the $\mathrm{Eu}_{2} \mathrm{Sb}_{3}$ structure and the anions of the CaC_{2}-type layer have then to occupy the following positions in the $\mathrm{Eu}_{2} \mathrm{Sb}_{3}$-like cell with $2 a=b, \beta=90^{\circ}$:
$\mathrm{Sb}_{\mathrm{II}} \rightarrow X_{\mathrm{II}}: x, y, z ;$
$\mathrm{Sb}_{\mathrm{III}} \rightarrow X_{\mathrm{III}}: x, y, \frac{1}{2}-z$;
$\mathrm{Sb}_{\mathrm{IV}} \rightarrow X_{\mathrm{IV}}: \frac{1}{2}-x, \frac{1}{4}-y, \frac{1}{2}-z$;
$\mathrm{Sb}_{\mathrm{V}} \rightarrow X_{\mathrm{V}}: \frac{1}{2}-x, \frac{1}{4}-y, z$
(with $1-x=2 y=\frac{1}{4}-2^{-1 / 2} r_{X} / a, z=\frac{1}{4}-r_{X} / c$;
$2 r_{\boldsymbol{X}}$ is the $X-X$ pair-bond distance).
The space group of this structure is still $P 2_{1} / c$. Another modification is obtained by combining the X_{2} pairs in such a way that the resulting squares become all parallel (\boldsymbol{X}_{2} pairs from the same chain fragments alternating with X_{2} pairs from different chain fragments of the $\mathrm{Eu}_{2} \mathrm{Sb}_{3}$ structure). This hypothetical structure shows again short nonbonding $X-X^{\prime}$ contacts, and its formation will be more probable with a square net of small cations at the place of the NaCl -type
square net. Such a substitution, however, changes the $M_{2} X_{3}$ phase into a true polyanionic ternary phase, $\quad M M_{2}^{\prime} X_{2}^{-(x-2)}$. Mooser-Pearson phases, i.e., nonmetallic representatives, could be of the type $\mathrm{Li}_{2} \mathrm{CaSi}_{2}$.

Physical Properties of $\mathbf{E u}_{\mathbf{2}} \mathbf{S b}_{\mathbf{3}}$

The divalent oxidation state of europium, suggested by the chemical analogy between $\mathrm{Eu}_{2} \mathrm{Sb}_{3}$ and $\mathrm{Ca}_{2} \mathrm{As}_{3}$, was confirmed by the magnetic measurements. The susceptibility of $\mathrm{Eu}_{2} \mathrm{Sb}_{3}$ obeys a Curic-Weiss law corresponding to the seven $4 f$ electrons of Eu^{2+}, with a paramagnetic Curie temperature $\theta_{\mathrm{p}}=-10^{\circ} \mathrm{K}$. Antiferromagnetic ordering sets in at $T_{\mathrm{N}}=14.4^{\circ} \mathrm{K}$. The shift of the suscep-tibility-peak temperature by application of an external magnetic field is rather pronounced (Fig. 2). The magnetic susceptibility in the ordered temperature range shows very low anisotropy, switching to χ_{\perp} at fields below 100 Oe . At $1.5^{\circ} \mathrm{K}$ an effective field of about 140 kOe is sufficient to align the magnetic moments.

Superexchange coupling will be mediated mainly by Sb_{I} and $\mathrm{Sb}_{\text {VI }}$ which contribute two valence electrons to the $\mathrm{Eu}-\mathrm{Sb}$ bonding. The $\mathrm{Eu}_{\mathrm{III}}$ and $\mathrm{Eu}_{\text {IV }}$ atoms in the puckered $\mathrm{NaCl}-$ like "square nets" are coupled to each other by four $\mathrm{Sb}_{\mathrm{I}}, \mathrm{Sb}_{\mathrm{VI}}$ neighbors, whereas the Eu_{I} and $\mathrm{Eu}_{\mathrm{II}}$ atoms appear to be only weakly coupled by one Sb_{I} and one $\mathrm{Sb}_{\mathrm{VI}}$ atom to the adjacent $\mathrm{Eu}_{\text {III }}, \mathrm{Eu}_{\text {IV }}$ layers. On the other hand the closest direct Eu-Eu contacts occur in the $\left(\mathrm{Eu}_{\mathrm{I}}, \mathrm{Eu}_{\mathrm{II}}\right)$ plane along the zigzag chains parallel to the a-axis. Probably ferromagnetic (a, b) planes are coupled antiferromagnetically in c-direction.

All our samples showed nonmetallic behavior near room temperature. A Seebeck coefficient of 90 to $100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{K}$ was observed, with a sign corresponding to p-type conduction. From the temperature dependence of the resistivity up to $300^{\circ} \mathrm{C}$ we deduce an energy gap $\Delta E \geqslant 0.5 \mathrm{eV}$. Resistivities

Fig. 2. Partial magnetic diagram of $\mathrm{Eu}_{2} \mathrm{Sb}_{3}$ derived from the field dependence of the susceptibility-peak temperature. The applied fields are corrected for demagnetization.
between 0.1 and $1 \Omega-\mathrm{cm}$ were measured at room temperature.

As was to be expected the resistivity of the isomorphous strontium analog $\mathrm{Sr}_{2} \mathrm{Sb}_{3}$ was much higher, 800 to $1000 \Omega \mathrm{~cm}$ at $300^{\circ} \mathrm{K}$. Its Seebeck coefficient turned out to be also about $100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{K}$, but indicated n-type conduction.

Acknowledgments

The authors are indebted to Professor D. Schwarzenbach for helpful discussions. This study
was supported by the Swiss National Science Foundation.

References

1. J. B. Taylor, L. D. Calvert, T. Utsunomiya, Y. Wang, and J. G. Despault, J. Less Common Metals 57, 39 (1978).
2. F. Hulliger and R. Schmelczer, J. Solid State Chem. 26, 389 (1978).
3. K. Deller and B. Eisenmann, Z. Naturforsch. B 31, 1023 (1976).
4. H. Blessing, P. Coppens, and D. Becker, J. Appl. Crystallogr. 7, 488 (1972).
5. D. Schwarzenbach, "Collected Abstracts 4th Europ. Crystallogr. Meeting, Oxford 1977," P I. 20.
6. "MULTAN 76," A system of computer programs, P. Main, L. Lessinger, and M. M. Woolfson, York, England, and G. Germain and G. -P. Declerc, Louvain-la-Neuve, Belgium (1976).
7. "The X-Ray System 72," Technical Report TR192, Computer Science Center, University of Maryland, College Park (1972); implemented and extended by D. Schwarzenbach.
8. D. Cromer and J. Mann, Acta Crystallogr. Sect. A 24, 321 (1968).
9. D. CROMER, Acta Crystallogr. 18, 17 (1965).
10. E. Mooser and W. B. Pearson, Phys. Rev. 101, 1608 (1956); Progr. Semicond. 5, 103 (1960).
11. F. Hulliger and E. Mooser, Progr. Solid State Chem. 2, 330 (1965).

[^0]: ${ }^{1}$ A list of the observed structure factors can be requested from the authors in Lausanne.

[^1]: ${ }^{a}$ Space group $P 2_{1} / c$ (No. 14), $Z=8$; all atoms in $4(e): \pm\left(x, y, z ; x, \frac{1}{2}-y, \frac{1}{2}+z\right) ; a=6.570(1) ~ \AA, b=12.760(2) \AA, c=15.028(2) \AA$, $\beta=90.04(1)^{\circ} ; \rho_{\text {culc }}=7.06 \mathrm{~g} / \mathrm{cm}^{3}$.

 The anisotropic temperature factor is defined as $\exp \left(-2 \pi^{2} \sum h_{i} h_{i} a_{i}^{*} a_{i}^{*} U_{i j}\right)$, where h_{i} are the Miller indices and a_{i}^{*} reciprocal-axis lengths; $U_{i j}$ in \AA^{2}. Standard deviations of the last digits are added in parentheses.

